计算机技术:包括计算机硬件、操作系统、编程语言、数据库等方面的技术,网络技术:包括网络拓扑结构、协议、安全等方面的技术,通信技术:包括移动通信、卫星通信、光纤通信等方面的技术。
大数据采集技术:这涉及到智能感知层,包括数据传感体系、网络通信体系、传感适配体系、智能识别体系以及软硬件资源接入系统。这些技术协同工作,实现对结构化、半结构化、非结构化数据的智能化识别、定位、跟踪、接入、传输、信号转换、监控、初步处理和管理。
大数据技术的关键技术包括:云计算、大数据存储、分布式处理、数据挖掘、机器学习、流处理、数据可视化、数据管理、ai/ml、iot 和边缘计算,可用于存储、处理和分析海量数据以获得有价值的见解。
大数据技术的体系庞大且复杂,基础的技术包含数据的采集、数据预处理、分布式存储、数据库、数据仓库、机器学习、并行计算、可视化等。
数据分析技术:数据分析技术包括数据可视化、预测分析和统计模型等,它帮助用户深入理解数据,揭示数据中的模式、趋势和异常,从而支持用户做出更加明智的决策。
云计算平台:云计算为大数据处理提供了弹性和可扩展的基础设施和服务,如MapReduce框架,它能够在大规模数据集上进行高效的计算。 可扩展的数据处理平台:为了应对不断增长的数据量,大数据技术需要能够在数据量和计算需求增加时进行水平扩展,包括大规模并行处理(MPP)数据库等技术。
1、Hadoop Hadoop 是一个开源的软件框架,它能够高效、可靠且可扩展地在分布式系统上处理大量数据。它通过在多个节点上存储数据的多个副本来确保数据的可靠性,并在节点失败时重新分配任务。Hadoop 主要用 Java 编写,适合在 Linux 生产环境中运行,同时也可以支持其他语言,如 C++ 编写的应用程序。
2、数据分析:SAS、SPSS和SAS都是经典的数据分析软件,它们提供了丰富的统计分析和数据挖掘功能。R语言也是一种广泛应用于统计分析和数据可视化的编程语言。 数据展示:Tableau和Power BI是两款流行的数据可视化工具,它们可以帮助我们将复杂的数据以图表的形式直观地展示出来。
3、九数云:提供在线数据分析服务,无需编程基础,操作直观简单,支持百万级数据分析,包括在线数据分析、图表制作和交互式仪表板功能。其优势在于易于上手,数据处理能力强,且数据隐私安全有保障。 FineBI:面向无技术基础的用户,操作简单且功能丰富,能快速完成大数据量分析,制作多样化图表。
4、数据分析的工具千万种,综合起来万变不离其宗。无非是数据获取、数据存储、数据管理、数据计算、数据分析、数据展示等几个方面。而SAS、R、SPSS、python、excel是被提到频率最高的数据分析工具。
1、MongoDB对于ETL服务器而言显然不是很合适,它的计算能力还无法跟hadoop、Greenplum媲美,估计计算能力一般(没有测试过)。 对于前端报表展现貌似可以,速度快,支持一定计算能力,并发好。
2、自然,MongoDB的使用也会有一些限制,例如它不适合:◆高度事务性的系统:例如银行或会计系统。传统的关系型数据库目前还是更适用于需要大量原子性复杂事务的应用程序。◆传统的商业智能应用:针对特定问题的BI数据库会对产生高度优化的查询方式。对于此类应用,数据仓库可能是更合适的选择。
3、MongoDB MongoDB是NoSQL数据库的代表,适合存储大量数据。其文档结构灵活,允许动态调整,对于存储复杂数据关系尤其适用。RapidMiner RapidMiner是数据分析平台,集成了数据准备、机器学习等功能,易于使用且支持协作,尤其适合Hadoop环境下的大数据处理。
1、比率分析:将两个财务报表数据相除得出的相对比率,分析两个项目之间的关联关系。财务比率一般分为四类:盈利能力比率,营运能力比率,偿债能力比率,增长能力比率。因素分析:又称连环替代法,用来计算几个相互联系的驱动因素对综合财务指标的影响程度的大小。
2、关联分析的核心是通过频繁项集挖掘,找出事物间的潜在关联。例如,表1中的超市交易数据中,通过设定的最小支持度和置信度,分析得出顾客购买尿布后可能购买啤酒的规则。最大频繁项集是发现关联规则的基础,它们是不被其他项集包含的最小项集集合,有助于构建其他所有频繁项集的代表样本。
3、数据收集 数据收集是大数据处理和分析的首要步骤,这一环节需要从多个数据源收集与问题相关的数据。数据可以是结构化的,如数据库中的数字和事实,也可以是非结构化的,如社交媒体上的文本或图片。数据的收集要确保其准确性、完整性和时效性。
4、对比分析法 对比分析法是一种普遍的数据分析手段。它通过比较不同数据集,揭示数据背后的变化情况和规律性,帮助理解过去的情况(现状分析)、探究原因(原因分析),以及预测未来(预测分析)。 关联分析法 关联分析法是一种旨在发现数据中潜在关联和规律的技术。
5、提效率 每个企业都会出具相关报表,利用数据分析工具,如数钥分析云,不懂技术的业务人员也能够通过简单的拖拉拽实现敏捷自助分析,无需业务人员提需求、IT人员做报表,大大提高报表的及时性,提高了报表的使用效率。通过数据分析工具,能够在PC端展示,也支持移动看板,随时随地透视经营,提高决策效率。
6、另外,明略的优势是拥有专业的技术团队,可以把 海量的数据源进行关联分析、深度挖掘,找出其中所隐藏的关系线索。谈到今后的发展策略,除了技术的专注,服务好现有客户将是明略数据近几年关注的焦点。